Product Description
Mitsubishi (MGC) Rotary Compressor Description
Mitsubishi air conditioning compressors reduce costs across the entire product lifespan in the application.
They support system design for high efficiency performance and for the use of alternative refrigerants for light commercial, commercial and industrial CHINAMFG applications such as rooftops units, chillers, process cooling, packaged units etc.
Key Features
Environmental protection
Energy efficiency leader,boosting the upgrade of the green household appliances
Efficient
18-slot motor with a 6-pole winding, creating the ultimate ultra-quiet technology in the industry
Tropics
Energy efficiency leader,boosting the upgrade of the green household appliances
Frequency conversion
Effective solution to the low energy efficiency problem of the inverter compressor at low frequency
Varactor
Lower minimum capacity of the compressor and better use comfort of the air conditioner.technology in the industry
Mitsubishi Main Catergories :
*Double-cylinder Variable Frequency Compressor
*T3/R407C Compressor,T3/R410A Compressor,T3/R22 Constant Speed Compressor
*R410A Constant Speed Compressor
*R22 Constant Speed Compressor
*R22 Efficient Environment-friendly Compressor
*Refrigerant Enhanced Compressor
*Vapor Injection Compressor
*Variable Frequency and Capacitance Compressor
*Single-cylinder Variable Frequency Compressor
*Universal Coupling Compressor
*Special Purpose Compressor
| Series | Model | Rotary | Displ. | Capacity | Power | COP | Range | |
| singie/twin | cm³/rev | W | Btu/h | W | W/W | HZ | ||
| K | KNB065FUJHC | Single Rotary | 6.5 | 2040 | 6960 | 635 | 3.21 | 25-115 |
| KNB073FUVHC | Single Rotary | 7.3 | 2250 | 7680 | 695 | 3.24 | 25-115 | |
| KNB073FKVMC | Single Rotary | 7.3 | 2250 | 7677 | 700 | 3.21 | 25-105 | |
| KNB073FFDMC | Single Rotary | 7.3 | 2250 | 7677 | 695 | 3.24 | 25-115 | |
| KNB092FHBMC | Single Rotary | 9.2 | 2960 | 15710 | 895 | 3.31 | 15-115 | |
| KNB092FFYMC | Single Rotary | 9.2 | 2920 | 9963 | 880 | 3.31 | 15-120 | |
| KNB092FTAMC | Single Rotary | 9.2 | 2920 | 9963 | 860 | 3.4 | 15-115 | |
| KNB092FLQMC | Single Rotary | 9.2 | 2920 | 9963 | 905 | 3.23 | 15-115 | |
| KNB092FADMC | Single Rotary | 9.2 | 2920 | 9963 | 870 | 3.35 | 15-115 | |
| KNB102FBHMC | Single Rotary | 10.2 | 3275 | 11175 | 950 | 3.45 | 15-115 | |
| KNB102FADMC | Single Rotary | 10.2 | 3270 | 11157 | 975 | 3.35 | 15-115 | |
| KNB102FFUMC | Single Rotary | 10.2 | 3275 | 11174 | 950 | 3.45 | 15-115 | |
| S | SNB110FGAMC | Twin Rotary | 11 | 3400 | 11601 | 1000 | 3.4 | 10-130 |
| SNB130FGYMC | Twin Rotary | 13 | 4100 | 13989 | 1245 | 3.29 | 10-130 | |
| SNB130FGAMC | Twin Rotary | 13 | 4100 | 13989 | 1200 | 3.42 | 10-130 | |
| SNB130FYQMC | Twin Rotary | 13 | 4090 | 13955 | 1215 | 3.37 | 10-120 | |
| SNB140FUYMC | Twin Rotary | 14 | 4410 | 15047 | 1335 | 3.3 | 10-120 | |
| SNB140FCAMC | Twin Rotary | 14 | 4400 | 18130 | 1300 | 3.37 | 10-120 | |
| SNB140FVQMC | Twin Rotary | 14 | 4380 | 14945 | 1305 | 3.37 | 10-120 | |
| SNB150FGAMC | Twin Rotary | 15 | 4620 | 15763 | 1420 | 3.25 | 10-120 | |
| SNB172FJFMC | Twin Rotary | 17.2 | 5400 | 18425 | 1580 | 3.42 | 10-130 | |
| SNB172FJGMC | Twin Rotary | 17.2 | 5460 | 18630 | 1640 | 3.33 | 10-130 | |
| SNB220FBGMC | Twin Rotary | 22 | 7000 | 23884 | 2100 | 3.33 | 10-120 | |
| T | TNB220FLHMC | Twin Rotary | 22 | 7130 | 24328 | 2200 | 3.24 | 10-110 |
| TNB220FFEMC | Twin Rotary | 22 | 7130 | 24328 | 2150 | 3.32 | 10-110 | |
| TNB306FFEMC | Twin Rotary | 30.6 | 9880 | 33711 | 2940 | 3.36 | 10-120 | |
| TNB306FPGMC | Twin Rotary | 30.6 | 9880 | 33711 | 3571 | 3.28 | 10-120 | |
| TNB306FPNMC(3phase) | Twin Rotary | 30.6 | 9880 | 33711 | 3571 | 3.28 | 10-120 | |
Xihu (West Lake) Dis.r Technologies is a global supplier and marketer of CHINAMFG maintenance and compressor solutions for commercial and residential air conditioning,heating,ventilation and refrigeration field, manufacturing and other industrial applications.
Incorporated in 2571,our innovative products have been used by facilities and plant maintenance personnel CHINAMFG for the maintenance of CHINAMFG systems,and producion of AC and refrigerating equipment.Our products include CHINAMFG maintenance machines,refigeration equipment and compressors.
Core Markets Served:
Commercial/Residential/Maritime/Utility HVAC
Air Conditioning,Refrigerator,Coldroom,Heat Pump Manufacturing
Refrigeration Parts Wholesale and Retail
Certification:
Packing and Delivery
FAQ
1. How long have you been in this field and where is your company?
We have been in this field for years and we are located in HangZhou, the Canton Fair host city, and the capital city of ZheJiang Province, near to HangZhou, Hong Kong, very convenient for trading and shipping.
2. What are your main catagories?
– Hermetic Compressor (scroll, rotary, reciprocating)
– Semi hermetic compressor (screw)
– CHINAMFG maintenance supplies
– Refrigeration equipment and parts
3.Can you offer us quality product at the best price?
Of course, Quality is our culture; we always take good care of our clients interest if both are sincere to establish good relationship.
4.What is the term of payment?
T/T, L/C,Western Union; Trade Assurance online.
5.How about the MOQ?
1 unit acceptable.
6. Cooperative Partners?
Gree, Landa, Media, GMCC, LG, Panasonic,Copeland, Maneurop, Performer, , Daikin, Hitachi,Highly, Mitsubishi, Secop, Embraco,Chigo, Haier, Sanyo, Wanbao, Sanhua,etc…
Contact Us
HangZhou Xihu (West Lake) Dis.r Technologies Co.,Ltd.
| After-sales Service: | Video Technical Support, Online Support |
|---|---|
| Warranty: | 1 Year |
| Power Input: | 2310W |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-18