Tag Archives: centrifugal compressor

China OEM Portable Silent Pressurized Lubrication Reciprocating Centrifugal Air Compressor air compressor parts

Product Description

Product Description

Pressurized oil-free centrifugal air compressor

The fuel cell air compressor is mainly used in the fuel cell air circuit to compress the external gas to obtain a suitable inlet pressure and flow rate for the operation of the stack.Oil free air compressors have the following advantages: 1. The oil-free air compressor adopts small cylinders, with a smaller volume and more compact structure; 2. The oil-free air compressor has excellent balance performance and does not require too many parts; 3. Low vibration, but high operating efficiency; 4. The oil-free silent design is used in the design of oil-free air compressors, which will not produce excessive noise during long-term operation; 5. Unmanned duty can be achieved during the work process; 6. The design of oil-free air compressors intentionally avoids excessive components, so they do not require a lot of manpower and material resources for maintenance and upkeep.

 

Product Parameters

Pressurized oil-free centrifugal air compressor

model XT-FCC160 XT-FCC300 XT-FCC300S XT-FCC300P
Rated
voltage Ratio(PR)
2.5 2.5 2.5 2.8
Flow (g/s) 58 108 108 97
Air compressor
 work rate( KW)
9 <15 <15 15.94
Matching system power (KW) 30-50 50-100 50-100 50-100
Intake
air temperature ºC
-30-45ºC -30-45ºC -30-45ºC -30-45ºC
voltage ( VDC) 450-750 450-750 450-750 450-750
Start/stop
Life (times)
>100000 >100000 >100000 >100000

Company Profile

HangZhou Sinopower Technologies Co., Ltd. develops and distributes various products in the hydrogen energy industry chain, including but not limited to hydrogen production, hydrogen storage, hydrogen supply, stacks and BOP parts, fuel cell system assemblies, fuel cell vehicles, etc. We have an experienced professional technical research and development team, which can provide professional services from product selection and matching, system design, product customization development and technical support. We provide hydrogen fuel cell design and R&D services and finished hydrogen fuel cell products for mainstream forklift companies in China. We have experience in stack integration and packaging services and are well received by customers at home and abroad.
 

 

Packaging & Shipping

The packaging of the items is strong and intact, avoiding breakage, leakage, and loss during the shipping process; avoiding damage to the internal items caused by external climate changes.Customize packaging according to the actual product to ensure that the product arrives at the customer’s designated place without damage.

Our Advantages

 

FAQ

1. who are we?
We are based in ZheJiang , China, start from 2011,sell to Southeast Asia,North America,Eastern Europe,South Asia.

2.Can you customize the rated power or voltage?
Yes, customizing products is acceptable.

3.Can your company provide whole system(fuel cell, Hydrogen production, hydrogen storage, hydrogen supply system)?
Yes, we can provide necessary accessories accordingly.

4. why should you buy from us not from other suppliers?
We have an experienced professional technical research and development team. Control system matching ability/R&D and quality control ability. Price advantage brought by supply chain integration capabilities.

 

5,What is your terms of payment?
We accept payment by Paypal, Alibaba, T/T, L/C,etc.. for bulk order, we charge 50% before production and remaining balance payment before shipment.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: 1year
Installation Type: Stationary Type
Samples:
US$ 1469/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China OEM Portable Silent Pressurized Lubrication Reciprocating Centrifugal Air Compressor   air compressor partsChina OEM Portable Silent Pressurized Lubrication Reciprocating Centrifugal Air Compressor   air compressor parts
editor by CX 2024-04-12

China Professional Je Series High Efficiency Centrifugal Air Compressor of Jintongling arb air compressor

Product Description

I. Production Description:

Complete ETI technology for a full package of whole equipment design, manufacture and testing; Standard configuration: core compressor parts, inlet expansion joint, inlet IGV, cooling system, lubrication system, control system, emptying component, vent check valve, vent expansion joint; Optional: inlet filter, monitoring system, sound proof box, electric motor of over IP54.

High aerodynamic efficiency for optimum aerodynamic characteristics, made the impeller efficiency reach over 92%;Excellent multiple shafting rotor design for optimum rotor stability and bearing loading;Design and manufacture based on API, AGMA and other top standards, resulting in higher stability of unit operation;Integrated modular construction, facilitating installation and maintenance.

The whole set of American ETI technology has been imported, and the key components have independent intellectual property rights. Air compression system, cooling system, lubrication system, and the control system are integrated into a complete structure. Reliable multi-shaft-rotor dynamic design can realize the stable operation of the compressor in all working conditions. Key core components( gears, bearings, seals, oil pumps, filters, oil coolers, monitoring sensors, etc) are all CHINAMFG brands at home and abroad. Standard modular design, convenient maintenance. Design of monitoring, protection and regulation in 1 control system, the interface is intuitive and friendly.
 

 
Model
Flow
(m³/min)
Outlet pressure
(BarG)
Motor Power
(KW)
Weight

  1.  
Dimension
Length(m) Width(m) Height(m )
JE6000 80~130 2.2~10.5 355~800 10.6 4.1 2.0 2.4
JE9000 130~200 2.2~10.5 500~1250 13.8 4.3 2.2 2.6
JE15000 200~315 2.2~10.5 710~1800 18.6 5.0 2.4 2.8
JE21000 315~500 2.2~10.5 1000~2800 23.5 6.6 2.8 3.0
JE30000 500~800 2.2~10.5 1400~4000 31.0 7.2 3.4 3.8
JE36000 600~1000 2.2~10.5 1600~6000 38.0 8.5 4.0 4.8
JE48000 800~1500 2.2~10.5 1800~8000 45.0 10.5 4.8 5.6
JE72000 1000~1800 2.2~10.5 3000~10000 56.0 12.5 5.5 6.0
Remark: stream turbine driving optional.

II. Performance and Festures:
 

1. The flowrate setting range between 45% to 100%. 
2. The system is ensured in high efficiency working by IGV+DV double control settings.  
3. Stable working, free of pressure impulse and low noise. 
4. Integrated design with small installation space which is convenient to replace the old-fashioned and low-efficiency blast fan. 
5. The system is of small installation space from integrated design which replaces the old model low efficiency blowers.  
6. Oil-free air supplied at the outlet. 
7. High-quality bearing structure with long service life, easy operation and low cost maintenance.    
8. Standardized control system with CHINAMFG instruments and meters, friendly operational system.  

III. Applications:

IV. Projects:

V. Partners:

VI. Exhibition:


VII FAQ:

Q1. Are you a factory?
A1. Yes, CHINAMFG Tech is the stock listed company in HangZhou stock market and has production base in HangZhou City ZheJiang Province.

Q2. Where is your factory?
A2. Our Production base in HangZhou City ZheJiang Province, and we have other fatories in ZheJiang , HangZhou, HangZhou

Q3. Do you support OEM?
A3. We support free OEM for more than 3 units.

Q4. How long is your warranty?
A4. We insist on providing customers with the best protection, the whole machine, 24 months warranty, 36 months warranty for the host.

Q5. What certification do you have?
A5. At present, we have passed CE and ISO 9001 certification. quality assurance.

Q6. What payment methods do you support?
A6. We support TT, B / L.

Q7. How long is your delivery time?
A7. Generally, our delivery period is within 20 days, and the specific delivery period depends on the customer’s specific order.

Q8. What accessories do you use for your machine?
A8. Our spare parts and hosts only cooperate with big brands, we insist on winning customers with quality.

Q9. How many years of history does your factory have?
A9. Our factory started in 1993, we insist on continuous innovation and research and development. In April 2571, we have just launched a new product, welcome new and old customers to consult.

Q10. Do you have an official website?
A10. sollantmachinery If you have any questions, please feel free to contact us.

After-sales Service: User on-Site Equipment Diagnosis and Troubleshoot
Warranty: 1 Year
Principle: Centrifugal Compressor
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Explosion-Proof
Mute: Mute
Customization:
Available

|

air compressor

What role do air dryers play in compressed air systems?

Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:

1. Moisture Removal:

Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.

2. Contaminant Removal:

In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.

3. Protection of Equipment and Processes:

By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.

4. Improved Productivity and Efficiency:

Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.

5. Compliance with Standards and Specifications:

Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.

By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Professional Je Series High Efficiency Centrifugal Air Compressor of Jintongling   arb air compressorChina Professional Je Series High Efficiency Centrifugal Air Compressor of Jintongling   arb air compressor
editor by CX 2023-11-13