Product Description
| Model | Machine | Diesel Engine | |||||||
| Free Air Delivery | Normal Working | Dimensions | Weight | Manufacturer | Model | Rated | |||
| Pressure | (without towbar) | power | |||||||
| m3/min | CFM | bar(g) | psig | L*W*H(mm) | kg | KW | |||
| WZSCY-3.2/8 | 3.40 | 120 | 8 | 116 | 2263*1590*1543 | 900 | Xihu (West Lake) Dis. | YSD490G | 32 |
| WZSCY-4/13 | 4.00 | 141 | 13 | 189 | 2570*1860*1720 | 1200 | Cummins | QFS2.8-C60 | 45 |
| WZSCY-5/7 | 5.55 | 196 | 7 | 102 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-5/10 | 5.00 | 177 | 10 | 145 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-6/7 | 6.00 | 212 | 7 | 102 | 2570*1860*1720 | 1200 | QFS2.8-C60 | 45 | |
| WZSCY-5/13 | 5.31 | 187 | 13 | 189 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY- 7/7 | 7.00 | 247 | 7 | 102 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY-7/10 | 7.00 | 247 | 10 | 145 | 3120*1860*1800 | 1500 | QSB3.9-C80-31 | 60 | |
| WZSCY-7/13 | 7.00 | 247 | 13 | 189 | 3360*2571*2050 | 1700 | QSB3.9-C100-31 | 74 | |
| WZSCY-10/8 | 10.00 | 353 | 8 | 116 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 74 | |
| WZSCY-9/13 | 9.00 | 318 | 13 | 189 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-10/10 | 10.00 | 353 | 10 | 145 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-12/7 | 12.11 | 428 | 7 | 102 | 3360*2571*2050 | 1700 | QSB3.9-C130-31 | 96 | |
| WZSCY-8/16 | 8.01 | 283 | 16 | 232 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-9/15 | 9.00 | 318 | 15 | 218 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-10/13 | 10.02 | 354 | 13 | 189 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-11/10 | 11.00 | 388 | 10 | 145 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-15/8 | 15.00 | 530 | 8 | 116 | 3155*2110*2295 | 2050 | QSB5.9-C150-31 | 113 | |
| WZSCY-12/13 | 12.00 | 424 | 13 | 189 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-14/12 | 14.00 | 494 | 12 | 174 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-15/10 | 15.19 | 536 | 10 | 145 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-17/8 | 17.00 | 600 | 8 | 116 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY18/7 | 18.00 | 636 | 7 | 102 | 3388*1760*2620 | 3600 | QSB5.9-C180-31 | 132 | |
| WZSCY-13/18 | 13.55 | 478 | 18 | 261 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-13/20 | 13.00 | 459 | 20 | 290 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-15/16 | 15.00 | 530 | 16 | 232 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-17/13 | 17.00 | 600 | 13 | 189 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-18/10 | 18.00 | 636 | 10 | 145 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-23/8 | 23.00 | 812 | 8 | 116 | 3400*1770*2660 | 4000 | QSC8.3-C215-30 | 160 | |
| WZSCY-15/18 | 15.00 | 530 | 18 | 261 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-17/14 | 17.66 | 624 | 14 | 203 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-20/13 | 20.67 | 730 | 13 | 189 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-22/10 | 22.21 | 784 | 10 | 145 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-24/8 | 24.00 | 847 | 8 | 116 | 3400*1770*2660 | 4000 | QSC8.3-C260-30 | 194 | |
| WZSCY-18/18 | 18.28 | 645 | 18 | 261 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-19/14 | 19.75 | 697 | 14 | 203 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-20/16 | 20.18 | 713 | 16 | 232 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-21/15 | 21.00 | 742 | 15 | 218 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-23/13 | 23.00 | 812 | 13 | 189 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-27/10 | 27.00 | 953 | 10 | 145 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-28/8 | 28.00 | 989 | 8 | 116 | 3780*1980*2685 | 4400 | QSL8.9-C325-30 | 239 | |
| WZSCY-22/20 | 22.00 | 777 | 20 | 290 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-23/15 | 23.00 | 812 | 15 | 218 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-25/13 | 25.00 | 883 | 13 | 189 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-26/12 | 26.00 | 918 | 12 | 174 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-28/10 | 28.00 | 989 | 10 | 145 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-32/10 | 32.25 | 1139 | 10 | 145 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-33/8 | 33.00 | 1165 | 8 | 116 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-36/7 | 36.00 | 1271 | 7 | 102 | 3960*2160*2905 | 5500 | QSL8.9-C360-30 | 264 | |
| WZSCY-26/25 | 26.00 | 918 | 25 | 363 | 4700*2100*2900 | 4800 | QSZ13-C550 | 410 | |
| WZSCY-34/25 | 34.00 | 1200 | 25 | 363 | 4700*2100*2900 | 6800 | QSZ13-C550 | 410 | |
| WZSCY-45/10 | 46.38 | 1638 | 10 | 145 | 4715*2160*3200 | 7000 | QSZ13-C550 | 410 | |
| WZSCY-33/35 | 33.00 | 1165 | 35 | 508 | 5000*2200*2900 | 7200 | KTA19-P700 | 522 | |
| WZSCY-39/25 | 39.00 | 1377 | 25 | 363 | 5000*2200*2900 | 7200 | KTA19-P700 | 522 | |
| Note: Skid-mounted type is available. | |||||||||
Wan CHINAMFG Certification
Wan CHINAMFG Exhibition
FAQ
1. OEM/ODM, or customer’ s logo printed is available?
Yes, OEM/ODM, customer’s logo is welcomed.
2. Delivery date?
Usually 5-25 working days after receiving deposit, specific delivery date based on order quantity.
3. What’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
4. How to control your quality?
We have professional QC team, control the quality during the mass production and inspect the products before shipping.
5. If we don’ t have shipping forwarder in China , would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
6. I never come to China before , can you be my guide in China?
Sure , I’m glad to be your guide because our company directly located in ZheJiang , where is the most famous city in China, if you want to come China then we are happy to provide you one-stop service, such as booking ticket, picking up at the airport, booking hotel, accompany visiting factory. It gonna make you an unforgettable memory.
MARKETING NETWORK
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | Unit 1 Year, Air End 2 Years |
| Lubrication Style: | Oil-less |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-05-08
China factory Mini Industry Portable Super Silent Compressors Oilless Dental Air Compressor air compressor portable
Product Description
Mini Industry Portable Super Silent Compressors Oilless Dental Air Compressor
Product Parameters
| Name | Two Pole Air Compressor |
| Applicable Industries | Manufacturing Plant, Food & Beverage Factory, Printing Shops, Construction works , Food & Beverage Shops, Advertising Company |
| Showroom Location | None |
| Machinery Test Report | Provided |
| Video outgoing-inspection | Provided |
| Marketing Type | Other |
| Core Components | Pressure vessel, Engine, Motor, Pump, Bearing |
| Gas Type | Air |
| Configuration | PORTABLE |
| Power Source | AC POWER |
| Type | PISTON |
| Lubrication Style | Oil-free |
| Mute | Yes |
| Voltage | 220V |
| Application | Medical dental, bus, airbrush spray paint,industrial |
| OEM | Welcomed |
| Certification | CE, ISO9001 |
|
MODEL NAME |
Delivery rate at 0 bar |
Max. pressure |
Nominal pressure |
Noise level at nomal pressure |
Motor input |
Voltage |
Frequency |
|
XLOF1400-25L |
190 L/min |
8 bar 116 CHINAMFG |
6 bar 87 CHINAMFG |
75 db(A) |
1.5 KW |
220 V |
50Hz |
|
Model name |
Delivery rate at 0 bar |
Max. pressure |
Nominal pressure |
Noise level at nomal pressure |
Motor input |
Voltage |
Frequency |
| XXLOF1400-25L |
190L/min |
8 bar 116psi |
6 bar 87 CHINAMFG |
75 db(A) |
1.5 KW |
220 V |
50 Hz |
Product Display
Company Profile
Founded in 2002, ZHangZhoug CHINAMFG Electromechanical Co., Ltd. focus on manufacturing air compressors for more than 15 years. Our company is located in Daxi Pump Industrial Area, HangZhou City, ZHangZhoug, China. having more than 15000 square meter working area.We specialize in all kinds of piston air compressors, especially having advantages in our new advanced heavy-duty oil-free air compressors.
FAQ
Q1: Are you a factory or a trading company?
A: A: Manufacturer and we focus on the development and production of air compressors for more than 20 years.
Q2: Is OEM service available?
A: Of course. We have many years experience of OEM service.
Q3: Can I get a sample to check the quality?
A: We are glad to offer you samples for test. Leave us message of the item you want or your requirements. We will reply you within 24 hours in working time.
Q4: I am buying from another supplier, but need better service, would you match or beat the price I am paying?
A: We always feel we provide the best service and competitive prices. We would be more than happy to personalize a competitive quote for you, just email us.
Q5: Is customized service available?
A: Of course, OEM & ODM both are available. Please contact us for details.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-04-03
China factory CHINAMFG Widely Used Superior Quality 5500W 7.5HP 500L Air Compressors 8bar (115psi) Car Air Compressors Compressor air compressor lowes
Product Description
Fixtec Widely Used Superior Quality 5500W 7.5HP 500L Air Compressors 8bar (115psi) Car Air Compressors Compressor
Main Products
View more products,you can click product keywords…
| Main Products | ||
| Power Tools | Bench Tools | Accessories |
| Hand Tools | Air Tools | Water Pumps |
| Welding Machine | Generators | PPE |
Product Description
EBIC Tools is established in 2003, with rich experience in tools business, FIXTEC is our registered brand. One-stop tools station, including full line of power tools, hand tools, bench tools, air tools, welding machine, water pumps, generators, garden tools and power tools accessories etc.
|
Product name |
7.5HP 500L Air Compressor |
|
Brand |
FIXTEC |
|
Model NO. |
FAC350075 |
|
Specifications
|
Voltage:380V-50HZ Rated power:5.5KW (7.5HP) Tank volume:500L Work pressure:8bar(115psi) Cylinder:Φ80*3 Air Delivery(L/MIN,C.F.M):670L/MIN,23.80C.F.M Neight Weight: 320KGS |
|
Package |
Carton Size: 193x68x123cm Qty/CTN: 1PC NW./GW. : 320kg/330kg |
Recommended products
Customer Evaluation
Company Profile
FAQ
FIXTEC team is based in China to support global marketing and we are looking for local distributors as our long term partners,Welcome to contact us!
| After-sales Service: | * |
|---|---|
| Warranty: | * |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Parallel Arrangement |
| Cylinder Position: | Horizontal |
| Samples: |
US$ 903/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-10-24
China OEM Wholesale Glades Industrial Compressors 7.5kw 11kw 15kw 22kw 37kw 55kw 75kw 132kw Variable Speed Rotary Screw Air Compressor lowes air compressor
Product Description
Wholesale Glades Industrial Compressors 7.5kw 11kw 15kw 22kw 37kw 55kw 75kw 132kw Variable Speed Rotary Screw Air Compressor
Motor
The motor with protection class IP54is used, the insulation class is F grade,and the bearing is made of SwedishSKF heavy bearing.
Air end
Adopting twin-screw main engine, largerotor and low speed design, new 5:6asymmetric rotor tooth profile, brandbearing, determines the excellent performance of the whole machine.
Intake valve
The red star intake valve can automaticallyadjust the gas volume according to the requirements of the system gas consumption,reducing operating costs.
MPV
Made of aluminum, it has outstanding antirust performance. With check function.The stable setting of the opening pressureensures that sufficient circulation pressureis established in the system to ensure lubrication of the machine body.
Cooling system
Feature:Large cooler system
Advantage:Axial flow Fan used forgood cooling effect
Benefit:Allow ambient temperature at 52″C.
Smart display screen
Feature:Intelligent control systemAdvantage:10 inch monitor to showall the date
Benefit:Simple operation and trouble free
Oil and gas separator
With the Apuda oil and gas separator,the rigorous oil and gas separationfilter can reduce the oil content of theexhaust gas in the compressor andthe fuel consumption of the unit.
The durable pipe system
The galvanized pipe is more durable, sturdy, longer, longer, and durable.
| Specification | ||||||||||||
| Model | Working Pressure | Air Delivery | Motor Power | Type of Driving | Type of Cooling | Dimension(mm) | Weight | Output pipe | ||||
| psig | bar | cfm | m3/min | kw/hp | L | W | H | (kg) | Diameter | |||
| GLDS-10A | 100 | 7 | 38.8 | 1.1 | 7.5/10 | Driect driven | Air Cooling | 850 | 650 | 800 | 240 | 3/4″ |
| 116 | 8 | 35.3 | 1 | |||||||||
| 145 | 10 | 30 | 0.85 | |||||||||
| 181 | 12.5 | 24.7 | 0.7 | |||||||||
| GLDS-15A | 100 | 7 | 63.6 | 1.8 | 11/15 | 1050 | 700 | 1000 | 450 | 3/4″ | ||
| 116 | 8 | 58.3 | 1.65 | |||||||||
| 145 | 10 | 53 | 1.5 | |||||||||
| 181 | 12.5 | 45.9 | 1.3 | |||||||||
| GLDS-20A | 100 | 7 | 84.7 | 2.4 | 15/20 | 1050 | 700 | 1000 | 450 | 3/4″ | ||
| 116 | 8 | 77.7 | 2.2 | |||||||||
| 145 | 10 | 74.2 | 2.1 | |||||||||
| 181 | 12.5 | 63.6 | 1.8 | |||||||||
| GLDS-25A | 100 | 7 | 109.5 | 3.1 | 18.5/25 | 1250 | 850 | 1100 | 620 | 1″ | ||
| 116 | 8 | 102.4 | 2.9 | |||||||||
| 145 | 10 | 95.3 | 2.7 | |||||||||
| 181 | 12.5 | 81.2 | 2.3 | |||||||||
| GLDS-30A | 100 | 7 | 134.2 | 3.8 | 22/30 | 1250 | 850 | 1100 | 620 | 1″ | ||
| 116 | 8 | 127.1 | 3.6 | |||||||||
| 145 | 10 | 113 | 3.2 | |||||||||
| 181 | 12.5 | 88.3 | 2.5 | |||||||||
| GLDS-40A | 100 | 7 | 187.1 | 5.3 | 30/40 | 1350 | 850 | 1040 | 680 | 1-1/2″ | ||
| 116 | 8 | 176.6 | 5 | |||||||||
| 145 | 10 | 151.8 | 4.3 | |||||||||
| 181 | 12.5 | 127.1 | 3.6 | |||||||||
| GLDS-50A | 100 | 7 | 233 | 6.6 | 37/50 | 1550 | 1571 | 1330 | 850 | 1-1/2″ | ||
| 116 | 8 | 218.9 | 6.2 | |||||||||
| 145 | 10 | 201.3 | 5.7 | |||||||||
| 181 | 12.5 | 162.4 | 4.6 | |||||||||
| GLDS-60A | 100 | 7 | 282.5 | 8 | 45/60 | 1550 | 1571 | 1330 | 850 | 1-1/2″ | ||
| 116 | 8 | 271.9 | 7.7 | |||||||||
| 145 | 10 | 243.6 | 6.9 | |||||||||
| 181 | 12.5 | 211.9 | 6 | |||||||||
| GLDS-75A | 100 | 7 | 370.8 | 10.5 | 55/75 | 1950 | 1270 | 1620 | 1800 | 2″ | ||
| 116 | 8 | 346 | 9.8 | |||||||||
| 145 | 10 | 307.2 | 8.7 | |||||||||
| 181 | 12.5 | 257.8 | 7.3 | |||||||||
| GLDS-100A | 100 | 7 | 480.2 | 13.6 | 75/100 | 1950 | 1270 | 1620 | 1900 | 2″ | ||
| 116 | 8 | 459 | 13 | |||||||||
| 145 | 10 | 399 | 11.3 | |||||||||
| 181 | 12.5 | 356.6 | 10.1 | |||||||||
| GLDS-125A | 100 | 7 | 572 | 16.2 | 90/125 | 2450 | 1600 | 1740 | 1950 | 2″ | ||
| 116 | 8 | 543.8 | 15.4 | |||||||||
| 145 | 10 | 466.1 | 13.2 | |||||||||
| 181 | 12.5 | 395.5 | 11.2 | |||||||||
| Motor Efficiency Class: Ultraefficient/IE3/IE2 as per your required | ||||||||||||
| Motor Protection Class: IP23/IP54/IP55 or as per your required | ||||||||||||
| Certification: CE/ISO9001 | ||||||||||||
| Voltage: 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, dual voltage is also ok | ||||||||||||
Equipment manufacturing industry: spray painting, spray washing machine, mechanical retreat mold, driving the assembly tools, drilling machine, hammer, lifting driving, combined tools, reamer, run run run, riveter screwdriver rotary drive, forging, metal forming press run operation, blasting, spraying, transmission, driving technology process.
Automobile manufacturing industry: spray cleaning parts, driving the assembly tool, fixture tools, lifting hoist crane, pneumatic control, forging hammer pressing workshop, casting workshop, metal workshop blast spray.
Beverage factory: running, bottle washing machine barrel turn, cHangZhou machine internal spraying, cleaning, food industrial used gas drying bottle, automatic operation, ash dust.
Cement manufacturing: Lime storage ventilation, cement slurry stirring and driving, cement bag clean sealing driving, raw material mixing, tipper operation, cleaning equipment, clinker cooling, conveying of cement and coal, cement kiln cleaning, vehicle and vessel handling, lifting and hoisting device, pneumatic control.
Chemical plant: ventilation and mixing, separation tower with gas, cleaning equipment, combustion gas, transportation, lifting liquid, spraying and cleaning pipe, pneumatic control, process gas, liquid transport.
Power plant: air cleaning pipeline, blowing smoke scale, cleaning of boiler and condenser pipe, jet cleaning, coal, sewage removal transmission, pneumatic control.
Hydropower plant maintenance: engine control, lock, drive controller, drive lubrication pump, driving lock, starting control, cleaning rubbish net.
The food industry (general application): mixing liquid, fermentation tank with gas (oxygen), cleaning equipment, with nozzle with nozzle cleaning container transport, food, raw materials, filtration dehydration.
Forging shop: oxygen skin, door, air curtain lifting hoist and hoist, driving the bending and straightening machine, driving clutch brake and a clamping device, the driving hammer, drive the fuel regulator.
Casting: hot metal car positioning, cleaning equipment, transporting sand, drive pneumatic tools, ramming machine, grinding machine, lifting hoist and elevator, pneumatic pick, tamping machine, steel than the brush, sandblasting, sieve sand, mud core.
Glass factory: blow bottle and glass, blow lamp and electronic tube, combustion gas, raw material, light transmission glass etching and drilling, conveying the glass, pneumatic control, vacuum hanging board.
Iron and steel plant: stirring the solution, oxygen with gas, HangZhou gas, converter with skip positioning, a sediment chamber drilling, unloading bags, open hearth CHINAMFG flue cleaning, driving clutch and brake, drive door, driving loading and transporting device, drive lubrication system, drive pneumatic tools, pneumatic pick, grinding wheel machine, lifting hoist and hoist, sandblasting, blast furnace, vacuum degassing furnace.
Wood, furniture processing: spray cleaning, gas lifting, bending, straightening, disseminated wood clamping clamp, pneumatic tools, carving tools, drilling machine, polishing machine, polishing machine, sand blasting, spray painting, spray device.
Sheet metal workshop: stirring the solution, transportation, jet cleaning, drive chip packaging press, driving plate chuck clutch and positioner, pneumatic tools, pneumatic pick, finishing hammer, drill, grinding wheel machine, crane and elevator, combination tools, riveting machine, sand blasting, spray, spray paint, lubricant container leakage detecting.
The mine ventilation gas, drilling: big hole, gas water removal, filtration fine crumbs, pneumatic hoist driven rock drill rig,,, blow hole, piling machine, drilling machine.
Oil refinery: combustion gas, emptying and cleaning oil, crane and elevator, drive control system, catalyst recycle, sandblasting, painting.
Papermaking factory: clean air equipment, crane and hoist, pool anti icing, roll feeding, pressing paper products, drive clutch, drive off paper machine, paper feeding through the machine, pneumatic control, pressure head box, demolition, removal of waste paper head box, vacuum drying.
Pharmaceutical manufacturers: mixing liquid, antibiotic fermentation with gas (oxygen), transmission of raw materials, raw materials, mixing and stirring driven, pneumatic control, air jet pulverization, spray drying, vacuum drying and vaporization of liquid, transmission.
Plant maintenance: jet cleaning, drive tools (hammer, concrete vibrator, drill, grinding wheel machine, crane, paving stone machine, riveter, oxide skin to wrench, winding machine, sand blasting, spray), metal, spray, spray system.
Textile factory: mixing liquid, gas lifting, moist, operation pressure accumulator, spray, spray system, transfusion.
Rubber factory: clean mold and mechanical devices, gas lifting, demoulding, mold, pneumatic control, spraying.
ZheJiang GLADES MACHINERY EQUIPMENT CO.,LTD.is located in HangZhou -logistics city , with the advantage of rapid transportation of goods. The company covers an area of more than 20 thousand square meters.with an annual output value of 6 million US dollars and fixed assets more than 10 million US dollars.
Glades’s primary businesses focus in following key areas:Oil-injected rotary screw compressors (Fixed speed and variable speed; normal and low pressure),Oil free screw air compressors (Scroll type, dry type, water-lubricated type),Energy Saving Screw Air Compressor(PM VSD screw air compressor,Two Stage Screw Air Compressor,Scroll screw air compressor),Portable screw air compressors ( electric motor powered),Air treatment equipment (Air dryers, air filters and air receiver tank) .At Glades, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. Glades has been exporting to more than 35 countries across the globe.
Upholding the core concept of “Reliable Carrying Trust”, ZheJiang Glades strives to provide the most reliable products and services through continuous innovation, so that customers can continue to obtain the maximum value for their returns.
Advantages:
Large displacement: Displacement 10% higher than ordinary piston compressor.
Energy-saving: Compared with piston air compressor, this series of models for the new national standard 2 energy efficiency products, excellent energy saving.
Easy to operate: 24 hours unattended all day work, free load automatically start, full load automatically shut down.
Strong stability:Under long time working, displacement and pressure stable, no crash phenomenon, low failure rate.
FAQ:
Q1:Where is your factory located?
A:Our factory is located in HangZhou city which nears HangZhou port about 2 hours.
Q2:How many air compressors do you produce everyday?
A: We can produce 100 pieces everyday.
Q3: Can you use our brand?
A: Yes, OEM/ODM is available.
Q4:How about your after-sales service?
a.Provide customers with installation and commissioning online instructions.
b.Well-trained engineers available to overseas service.
c.CHINAMFG agents and after service available.
Q5:What’s your delivery time?
Generally 15 to 20 days, if urgently order, pls contact our sales in advance.
Q4: Why should I choose you?
1. 24/7 after sales service support in different languages;
2. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center;
3. Technical training for customers in Glades air compressor factory or working site;
4. Plenty of original spare parts with proven quality are all available.
5.All kinds of technical documents in different languages.
| After-sales Service: | 24 Hours Online Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
What are the energy-saving technologies available for air compressors?
There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:
1. Variable Speed Drive (VSD) Compressors:
VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.
2. Energy-Efficient Motors:
The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.
3. Heat Recovery Systems:
Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.
4. Air Receiver Tanks:
Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.
5. System Control and Automation:
Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.
6. Leak Detection and Repair:
Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.
7. System Optimization and Maintenance:
Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.
By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-10-20
China Hot selling Factory Direct Sale Portable Breathing Air Compressors for Diving Fire Fighting air compressor lowes
Product Description
400L/min Factory direct sale portable breathing air compressors for diving fire fighting
Feature:
BW400 high pressure air compressor is a cost-effective, safe and reliable product, fixed inflatable, compressed air in accordance with the European Union EN12571 breathing standards.It is mainly used in diving, fire fighting, paintball shooting, aerospace, petrochemical, gas tightness detection, explosion, precision instruments and other fields.It can also provide clean, safe and reliable gas source for other industries.It is composed of reliable components with high service life, compact structure, simple maintenance, easy to use and pure gas outlet.
Product structure:
Splash Lubrication.
Oil pool capacity :2.8L.
Intake filter element.
Cylinder 3-stage breathing special air compressor.
Setting cooler after every stage compressed.
Intermediate oil /water separators after each stage (except 1 st stage) Final oil / water separator.
Setting safety valves after each stage and final pressure safety valve.
Pressure maintaining valve.
A high pressure gauge mounted on a compressor.
3 Filling hose and filling valve.
Equipped with a breathing air filter and a triple filtration system consisting of activated carbon molecular sieve carbon monoxide adsorbent ensures that the filtered compressed air meets the breathing air standard EN12571
Specification for 400L/min High Pressure Air Compressor for Scuba Diving:
| Model No | BW400 | BW400SH | BW400P(PLC) |
| Flow Rate | 400L/min | 400L/min | 400L/min |
| Working Pressure | 200/300Bar | 200/300Bar | 200/300Bar |
| Safety Valve setting | 330Bar | 330Bar | 330Bar |
| Number of compression stage | 3 | 3 | 3 |
| Number of cylinder | 3 | 3 | 3 |
| Driven by | Three phase motor | Honda Petrol Engine | Three phase motor |
| Voltage / Frequency | 380V/50Hz | GX390 | 380V/50Hz |
| Power | 7.5Kw | 13PS | 7.5Kw |
| Noise | ≤80 dB | ≤85 dB | ≤80 dB |
| Speed | 1560rpm/min | 3600rpm/min | 1560rpm/min |
| Dimension | 1100*580*670mm | 1100*580*670mm | 1100*580*670mm |
| Wight | 175Kg | 175Kg | 175Kg |
| Breathing air standard | EN12571 | EN12571 | EN12571 |
Photo for Factory direct sale portable breathing air compressors for diving fire fighting
| Warranty: | 12months |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
How are air compressors utilized in pneumatic tools?
Air compressors play a crucial role in powering and operating pneumatic tools. Here’s a detailed explanation of how air compressors are utilized in pneumatic tools:
Power Source:
Pneumatic tools rely on compressed air as their power source. The air compressor generates and stores compressed air, which is then delivered to the pneumatic tool through a hose or piping system. The compressed air provides the force necessary for the tool to perform various tasks.
Air Pressure Regulation:
Air compressors are equipped with pressure regulation systems to control the output pressure of the compressed air. Different pneumatic tools require different air pressure levels to operate optimally. The air compressor’s pressure regulator allows users to adjust the output pressure according to the specific requirements of the pneumatic tool being used.
Air Volume and Flow:
Air compressors provide a continuous supply of compressed air, ensuring a consistent air volume and flow rate for pneumatic tools. The air volume is typically measured in cubic feet per minute (CFM) and determines the tool’s performance capabilities. Higher CFM ratings indicate that the pneumatic tool can deliver more power and operate at a faster rate.
Tool Actuation:
Pneumatic tools utilize compressed air to actuate their mechanical components. For example, an air-powered impact wrench uses compressed air to drive the tool’s internal hammer mechanism, generating high torque for fastening or loosening bolts and nuts. Similarly, air-powered drills, sanders, nail guns, and spray guns rely on compressed air to power their respective operations.
Versatility:
One of the significant advantages of pneumatic tools is their versatility, and air compressors enable this flexibility. A single air compressor can power a wide range of pneumatic tools, eliminating the need for separate power sources for each tool. This makes pneumatic tools a popular choice in various industries, such as automotive, construction, manufacturing, and woodworking.
Portability:
Air compressors come in different sizes and configurations, offering varying degrees of portability. Smaller portable air compressors are commonly used in applications where mobility is essential, such as construction sites or remote locations. The portability of air compressors allows pneumatic tools to be used in various work environments without the constraints of being tethered to a fixed power source.
Overall, air compressors are integral to the functionality and operation of pneumatic tools. They provide the necessary power, air pressure regulation, and continuous airflow required for pneumatic tools to perform a wide range of tasks efficiently and effectively.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-19